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Abstract— Traffic forecasting is considered nowadays as one
of the most important traffic management techniques on road
networks. To provide suitable control strategies and advanced
traveler information, which improve traffic performance, a
continuous short-term prediction is a significant requirement.
In this paper, we propose a new approach for travel time
forecasting between two points of interest of a given highway
divided in nodes and links. Since nodes and links have distinct
characteristics, two different prediction methods are proposed.
The resulting predicted travel time is then computed as the
sum of predicted travel times in nodes with those in links. An
adaptive Kalman filtering approach is considered for predicting
sojourn time in nodes and flows at boundaries of links. Inside
links, divided in cells for improving resolution, a deterministic
observer is used for computing unmeasured densities. The
performance of the proposed method is evaluated by using data
of the Grenoble south ring, a case study of the NoE Hycon2.

I. INTRODUCTION

Travel time can be defined as the time needed to traverse
a road between two points of interest. It is one of the most
used traffic index. It is particularly useful for a wide variety
of users including transportation engineers, planners, and
consumers, [1], [2].

Multi-step ahead dynamic travel time forecasting has been
widely investigated in the literature, see for instance the
survey [3]. It has been pointed out that travel time forecasting
is firmly related to the appropriate available data, and the
arise of forecasting methodologies is due to this available
information. This index can be predicted either by means
of direct measurements of travel time, or through inference
from indirect measurements such as speed or flows.

Direct travel time measurements can be obtained using
license plate matching techniques, probe vehicles, and, in
general, floating car (FCD) or mobile data (FMD) [4]–[7].
Nevertheless, those methodologies present some limitations,
such as, special requirements needed for installation, driver’s
privacy issues, and limited available data, among others.

Indirect measurements are greatly more available. They
can be exploited following two different strategies. The first
corresponds to the case where both flow, occupancy, and
speed measurements are available, whereas in the second
only flow and occupancy measurements are attainable.
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For the first case, the problem reduces to the prediction
of the travel time from the velocity measurements. Several
works have been presented following this direction, see [8]–
[10]. The main advantage of this approach comes from its
simple online implementable nature. However it presents the
disadvantage that between two consecutive detectors a mean
speed is assumed, therefore the more the sensors are spaced,
the less the results are accurate.

As for the second case, two approaches can be used to
estimate the travel time; computing a mean speed from
the flow and occupancy measurements, [10]–[12], or by
estimating travel time from density, making use of only
flow measurements. For the latter the density is estimated
from the vehicle conservation law [13], and the common
methodology to obtain the future values of the travel time
is through the prediction of the boundary flows. Note that
for achieving the flow prediction several approaches, such
as, time series models, Kalman filtering, among others,
can be used. In [10] for instance, the dynamic travel time
estimation was achieved under the prediction of traffic flow
and occupancy using seasonal ARIMA model together with a
Kalman filter approach. Also here however, distance between
two consecutive sensors is not really taken into account,
generating a low accuracy in the forecasting results when
the distance between sensors is important enough.

Compared with the previous works, the one presented
herein aims to develop a robust, accurate, and easy online
implementable prediction methodology.

For this, two highway sections need to be treated dif-
ferently: links, consisting on a concatenation of cells, and
nodes, portion with an input or an output. For links the
travel time forecasting will be achieved by making use of
a Luenberger state observer based on the conservation law
principle, whose inputs are boundary traffic flows predicted
using an adaptive Kalman filter (AKF) approach. This is, to
the best of our knowledge, the first time where AKF and
CTM-based predictor are used together to achieve this goal.
When considering nodes, on the other hand, we will assume
that speed measurements are available. Thus, after computing
the time spent in the node up to the current time, we can
apply an adaptive Kalman filter approach to predict its future
values.

This paper is organized as follows, first in section II we
introduce our problem formulation, in section III we present

2013 European Control Conference (ECC)
July 17-19, 2013, Zürich, Switzerland.

978-3-952-41734-8/©2013 EUCA 4045



an adaptive Kalman filter approach for multi-step ahead
time series prediction, applied for boundary flows and node
sojourn time. In section IV the study of node sojourn time
and travel time prediction in links is conducted. Simulation
results will be presented in section V, and then in section VI
we present our conclusions.

II. PROBLEM FORMULATION

Given a section of interest in the highway, from point A
to B, historical data of the boundary traffic flows ϕu

t,d, ϕd
t,d

and mean speed inside the nodes vmean
t,d , t = 0, 1, · · · , T ,

d = 1, 2, · · · , D−1, and current information until time t0 of
the day D,

{
ϕu
t,d

}
,
{
ϕd
t,d

}
,
{
vmean
t,d

}
, t = 0, 1, · · · , t0. Our

aim is to predict the travel time at time t = t0 + 1, · · · , t0 +
∆T from A to B (see figure 1).

Fig. 1. Architecture of a section of a highway

As depicted in figure 1, a section is composed of links and
nodes. A link is defined as a concatenation of homogeneous
cells, i.e. cells with the same number of lanes. While a node
is a portion of the ring-road with an on-ramp of off-ramp.
The predicted section travel time TA→B

t is then computed
as:

TA→B
t =

k∑
i=1

T i
ti−1

(1)

with k the number of elements present in the section, cells
plus nodes, T i the predicted travel time for the ith element,
and ti−1 the time a vehicle enters this element.

Our problem then reduces to predict Tt in a node or in
a link given current and historical measurements of flows
and velocities. The overall forecasting scheme is depicted in
figure 2.

Fig. 2. Short-term total travel time prediction scheme.

As it was aforementioned, the travel time is computed
according to the available data. For a cell it can be defined
as:

Tt = ft∆x (2)

where ∆x stands for the cell length and ft has the dimension
of the unit time for crossing the cell. If speed measurements
are available then ft is simply the inverse of the cell mean
speed vmean

t . Otherwise,

ft =
ρt

ϕu
t + ϕd

t

(3)

where ϕu
t , ϕd

t , and ρt stand for upstream and downstream
cell boundary flow, and cell density respectively.

Therefore for nodes the travel time is directly given by (2)
with ft = 1

vmean
t

, where the node mean velocity is defined

as vmean
t =

vi
t+vf

t

2 (see figure 1).
While for a link of n cells, the travel time at t0 can be

computed as:

Tto =

n∑
i=1

T i
ti−1

=

n∑
i=1

∆x

 ρiti−1

ϕ
ui
ti−1

+ ϕ
di
ti−1

 (4)

with T i the travel time of the ith cell and ti = ti−1 + T i
ti−1

the relative current time of the ith +1 cell. It is worth noting
that by dividing the link in several small cells, and thus
predicting the travel time for each one, rather than directly
predicting this for the complete link, a higher accuracy can
be obtained, since inside a link the traffic dynamics can vary
substantially in the presence of a congestion wave.

III. ADAPTIVE KALMAN FILTERING STRATEGY

This methodology focuses on the development of a multi-
step ahead forecasting approach that, under an online imple-
mentable algorithm, can achieve accurate prediction perfor-
mance with no requirement of extensive data calibration nor
large historical database.

We are aiming to obtain a multi-step ahead predictor based
on Kalman approach that could also be able to capture
eventual atypical events between the current and historical
data. For this reason we transform our prediction problem
to a filtering one, where the measurements are pseudo-
observations obtained from the predictor proposed in [14].

One of the problems that emerges from this strategy is
the hypothesis of a priori knowledge of noise covariance
matrices. for this, we estimate online and empirically theses
matrices using the approach proposed in [15].

This AKF approach was first proposed in [16], and it was
oriented towards demand flow forecasting. However, it can
be extended to any time series when heuristics are available.
In the sequel we describe an extension of [16].

Let us consider the following Gauss-Markov model:

xt = xt−1 + wt

yt = Htxt + vt
(5)

where wt ∼ N (qt, Qt) and vt ∼ N (0, R) are mutually
independent and independent from the initial conditions of
the state xt. We denote by y0:t the set of measurements up
to time t, as aforementioned this set will be composed by
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pseudo-observations obtained from the approach described
[14].

The methodology in [14] combines a constant and a
nonparametric predictor. The constant one acts for small
prediction horizon, while, with the increasing of the horizon,
heuristics are used for prediction. Based on this considera-
tion, the following strategy was proposed:

ŷt0+t = yHt0+t +K∆yt0 (6)

with

∆yt0 = yt0 − yHt0

K =

{
η(1 − t

∆tmax
),

0,

if
if

0 < t ≤ ∆tmax

t > ∆tmax

(7)

yHt being the level of the averaged historical data, η being
the weighting of current and historical data, and ∆tmax the
maximum horizon for the constant predictor.

The mean and the variance of both process and observa-
tion noises are estimated with the available data using the
approach proposed in [15]. Considering a time window of
N past samples, the method acts as follows:
• Initialization:

x̂0|0 = xt0 , P0|0 is initialized with a suitable
positive value,

r̂ = 1
N

t0∑
t=t0−N+1

(yt −Htxt),

R = 1
N−1

t0∑
t=t0−N+1

(yt −Htxt − r̂)2,

q̂0 = 1
N

t0∑
t=t0−N+1

(xt − xt−1),

Q̂o = 1
N−1

t0∑
t=t0−N+1

(xt − xt−1 − q̂0)2.

• Prediction process: for t = t0 + 1, · · · , t0 + ∆T

– Kalman filtering equations:

x̂t|t = (I−KtHt)x̂t−1|t−1 +Ktyt + (I−KtHt)qt
(8)

with

Kt = Pt|t−1H
T
t

(
HtPt|t−1H

T
t +R

)−1
(9)

Pt|t = (I −KtHt)Pt|t−1 (10)

and
Pt|t−1 = Pt−1|t−1 +Qt−1. (11)

– If t > t0 + N , the mean and the variance of the
process noise are updated as

q̂t =
1

N

N∑
t=1

qt (12)

Q̂t = 1
N−1

N∑
t=1

((qt − q̂)(qt − q̂)T−

_ (N−1)
N (Pt−1|t−1 − Pt|t))

(13)

qt = x̂t|t−x̂t−1|t−1 is an approximation of the process noise.
See [15] for more details.

IV. TRAVEL TIME PREDICTION

In this section, we now describe the travel time prediction
by first considering links and then nodes.

A. Link travel time prediction

The objective here is the prediction of flows at the link
boundaries and densities in each cell. For this, we refer to
figure 3, where a short-term traffic flow prediction approach
is needed in order to obtain the predicted cell’s densities, and
consequently the predicted travel time.

Fig. 3. Scheme of link travel time prediction.

In the sequel, we first present the strategy to accomplish
the boundary flow prediction by introducing the state and
measurement model in order to apply the approach intro-
duced in section III. Second, we make use of the CTM-
based state observer developed in [13], [17], for carrying
out densities and interface flows prediction.

1) Boundary flows prediction: As aforementioned, we
transform the prediction problem to an estimation one by
using pseudo-observations described in section III. Given
the vehicle conservation law constraint, the prediction of the
link’s boundary flows must not be unrelated. By introducing
another state variable εt = ϕu

t −ϕd
t , the difference in time of

the upstream and downstream flows, and therefore predicting
εt and ϕu

t using historical data, we could impose some
relation between the flows.

The model proposed is as follows:

xt = xt−1 + wt

yt = Hxt + vt
(14)

where xt =

(
ϕu
t

εt

)
, wt =

(
wϕ

t

wε
t

)
, yt =(

yϕu

t

yϕd
t

)
, vt =

(
vϕt − r̂

ϕ

vεt − r̂
ε

)
, H =

(
1 0
1 −1

)
The process and observation noises are modelled as wϕ

t ∼
N (0, Qϕ

t ), wε
t ∼ N (0, Qε

t ), vϕt ∼ N (rϕ, Rϕ), and vεt ∼
N (rε, Rε). As before, yt is the output of the Chrobok
predictor, and r̂ϕ and r̂ε being the estimated observation
noise sample mean for the upstream flow and the difference
in time of upstream and downstream flows respectively,
computed empirically using the strategy in [15].

For the prediction process the Kalman filtering equations
(8)-(13) are to be applied to state-space model (14).

4047



2) Densities and interface flows prediction: It was afore-
mentioned that the links will be divided into several cells
in order to improve the accuracy of the density prediction.
However it is clear that only boundary flows measurements
are available, since sensors are located at node level, i.e.
at the boundary of the links. Therefore, given the predicted
boundary flows, our problem becomes an estimation prob-
lem, where the main objective is to reconstruct the densities
inside the cells (not equipped with sensors). For this purpose
we will make use of the observer developed by the authors
in [13].

The macroscopic traffic flow model used to model the
traffic dynamics is the cell transmission model (CTM):

ρit+1 = ρit + T
li

(ϕi
t − ϕi+1

t ) (15)

where ρit, is the predicted density of the ith cell in a link at a
specific time indexed by t, and ϕi

t is the predicted flow at the
cell interface. To guarantee convergence of (15) the condition
viT < li is sufficient [18] , where T is the discrete time
interval, li the cell length, and vi the free-flow speed .

The interface flows in the CTM-model are computed as
the minimum of the supply Si, and the demand Di−1 at
each interface

ϕi = min{Di−1, Si} (16)

with
Di−1 = min{vi−1ρi−1, ϕm,i−1},
Si = min{ϕm,i, wi(ρm,i − ρi)}

where ϕm,i is the maximum flow allowed by the capacity
of cell i, ρm,i is the jam density (i.e. the maximum density
that can be reached), vi corresponds to the free flow speed,
and wi is the congestion wave speed in cell i.

The model (15) has different operation modes, according
to the minimum between its upstream demand Di−1 and its
downstream supply Si, the number of possible modes for a N
cell link are: M = 2(N+1) (figure 4). To constrain the model
two assumptions are made, only one congestion wave may
exist in a highway link, and that it will propagate upstream.
With this, the number of modes is reduced to M = 2(N+1).

A deeper study of how the observer was built, as well as
an exact definition of the system’s dynamic matrices can be
found in [13], [17].

Fig. 4. Densities and flows in a link.

B. Node sojourn time

As shown in figures 2 and 5, our aim is to predict future
values of the node sojourn time given velocity measurements
(current and historical).

For this, we transform the prediction problem to an esti-
mation one, as explained in section III, by considering the
following model:

Fig. 5. Scheme of node sojourn time prediction.

xt = xt−1 + wt

yt = xt + vt
(17)

where xt = Tt, vt = vT t − r̂.
The process and observation noises are modelled as wt ∼
N (0, Qt) and vt ∼ N (r,R). Where yt is the output of the
Chrobok predictor, and r̂ being the estimated noise sample
mean computed empirically using the strategy proposed in
[15].

It is worth noting that even though the system observa-
tions correspond with velocity measurements, we pre-process
these data in order to get the node sojourn time, using the
mean velocity above described.

For the prediction process the Kalman filtering equations
(8)-(13) are to be applied to state-space model (17).

C. Short-term total travel time prediction scheme

The total travel time prediction, given by (1), is summa-
rized in figures (2),(3), and (5). It is worth noticing that
this methodology not only allows to predict the travel time
between two points of interest, but also velocity conditions
along the section with a high degree of granularity.

V. STUDY CASE

A. Description of the Grenoble south ring

The Grenoble south ring showcase has been already
introduced elsewhere, see [13]. This is an approximately
10.5 km long highway constituted by two carriageways of
two lanes each. Only the direction east-west was modelled.
In this section there are 10 on-ramps and 7 off-ramps.
This study case was implemented on the traffic simulator
Aimsun, using real demand flow data introduced in the 13
entrances of the highway. The cells length and consequently
the simulation time-step as well as the CTM parameters
identification strategy were the same as adopted in [13].

The points of interested A and B on the highway can be
depicted in figure 6, corresponding with the entrance Meylan
and the exit Le rondeau. The scenario under consideration
corresponds with the example that a vehicle wants to enter
the highway through Meylan and traverse the entire highway.
For this section there are 17 nodes and 9 links.

The traffic flows and velocities used to evaluate the good-
ness of the strategy proposed in this paper were obtained
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Fig. 6. Grenoble sounth ring show case.

using actual measurements of the Grenoble south ring resam-
pled in a window of 24 hours. Due to the lack of historical
database for either flow data and velocity in the nodes, a
database of heuristics was created, by adding white noise to
the current profile and filtering the resulting data with low-
pass filters whose parameters were randomly generated.

B. Simulation results

As results we will present two different scenarios. The first
corresponds at 7:45 am and the second at 19:00, both for
a prediction horizon of 45 minutes, at steps of 5 minutes.
Considering the same set of data as used in [13], the
two cases were chosen in the morning and afternoon time,
because of their level of congestion.

Both of the scenario not only will be provided with the
total predicted travel time, but also with the trajectory of
a vehicle when it moves through the predicted velocity
conditions at different departing times.

In order to comply with the stability condition [18] the
simulation step (sample time) was chosen to be 8s (see [13]).
For the links and the nodes, the boundary flows and travel
time were predicted every minute, thus they needed to be
resampled back to 8s. Note also that the data were filtered
using a 1st-order Butterworth low-pass filter with a cut-off
frequency of 10 mHz.

Figure 7 shows the forecasting result at a current time of
07:45 am. Although it is seen that better results are obtained
when the prognosis horizon is smaller, a fairly good match
between the predicted and measured travel time is observed.
The length of the section is 10.5 km long. Therefore if a
passenger desires to leave at 07:45 am the results show
that 25 minutes are needed to traverse this section, that
corresponds with a average velocity of 25 km/h, while the
measured travel time is 24 minutes, therefore 1 minute error
is obtained. The results also show that if the driver waits
for another 30 minutes he will be arriving to his destination
point at 08:33 am instead of 8:10 am (leaving at 07:45 am),
therefore he would have the choice whether or not it is worth
arriving 23 minutes after or spending 7 minutes in traffic.

For the same scenario, figure 8 exhibits the predicted
vehicle trajectory and velocity conditions for the highway
section. The closeness between the predicted and measured

Fig. 7. Prediction result at 7:45 am.

trajectories can be clearly noticed. As it can be seen, these
trajectories can change according to the driver departing
time. For instance, between the kilometers 6 and 7 the
congestion is dissipating as the departing time increases, it
is observed that in this section a driver would encounter a
mean velocity of 15 km/h approximately when leaving at
the current time, whereas 45 minutes later it would dissipate
up to roughly 70 km/h. It is also seen that in the first 3.5
km the highway conditions are in free flow, with a velocity
of 90 km/h. For the entire predicted velocity dynamics, the
biggest congestion is obtained, as expected, in the end of the
highway.

Intuitively figure 7 can be seen as the total time the driver
would spend in the section chosen, while figure 8 would be
the driving conditions experienced in the section.

Fig. 8. Predicted vehicle trajectory moving through predicted
velocity conditions at 7:45 am.

Considering now the current time at 19:00, figure 9 shows
a good precision between the measured and predicted travel
time. In this case we can note that driving conditions stay
quite similar even when the horizon increases, which means
that a driver would not gain much in waiting some minutes
to depart. In contrast with the scenario before, in figure 10 a
congestion is observed in both the beginning and in the end
of the highway.

It is also seen from figure 10 that if a driver leaves
at 19:00 between kilometer 4 and 5, he will encounter a
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strong congestion, whereas if he leaves 30 minutes later, for
instance, this congestion will disappear.

Fig. 9. Prediction result at 19:00.

Fig. 10. Predicted vehicle trajectory moving through predicted
velocity conditions at 19:00.

VI. CONCLUSIONS

In this paper, we have addressed the problem of dynamic
travel time forecasting by making use of flow and velocity
measurements provided by sensors located at the node levels
of the highway. We have focused our attention on a set-
up where new data arrive every few minutes or seconds,
therefore the main benefit of this work is that under an on-
line and no computational heavy methodology we can assess
the prediction of travel time and traffic conditions. This
forecasting approach was applied on Grenoble south ring. For
this study case the simulation results show that the measured
and predicted travel time agree for free-flow and congested
period times, specially for smaller prediction horizons. As
future research we are currently working on bounded travel
time forecasting in the presence of uncertainties in the
demand flows.
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