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This paper presents two empirical trajectory data sets focusing on the merging behaviour
on a motorway, both in the Netherlands and in France. A careful review of the literature
shows that the main theories explaining this behaviour rely on the hypothesis of gap
acceptance, i.e. the fact that each driver has a certain threshold value depending on among
other things the distance to the end of the acceleration lane, and when the offered gap is
larger than this threshold the driver decides to merge.

We conducted a detailed comparative analysis of the two data sets examining the main
variables identified in our conceptual model of merging behaviour. The contribution of this
paper is that the analysis does not only focus on the accepted gaps, but it also takes into
account the rejected gaps. The comparison of our observations with the critical gap formula
in literature showed that this formula does not take into account the strong probability of
rejecting a gap, even larger than the gap finally accepted.

Moreover, we created a logistic regression model that predicts the acceptance or rejec-
tion of a given gap, depending on the gap value and the speed difference between the
merging vehicle and the putative follower. We have shown that two other factors impact
the probability of rejecting or accepting a given gap, but these are significant for just one of
the data sets: the distance to the end of the acceleration lane and the speed difference
between the putative follower and the putative leader. This shows the impact of the local
situation on the merging behaviour (e.g. traffic composition, road geometry, and traffic
conditions).

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Research into motorway bottlenecks has shown that driver behaviour at merging sections affects traffic operations and is
the cause of breakdowns (Elefteriadou et al., 1995; Kerner and Rehborn, 1997; Yi and Mulinazzi, 2007). The breakdown
events appear to be associated with interaction between the flow on the main motorway and the flow on the acceleration
lane (or the ramp), which compete for the same capacity downstream the merging point.

Many models have been developed to describe and predict this process, and some of these models have been imple-
mented in microscopic simulation models to provide a more realistic representation of traffic operations. However, due
ceedings
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to a lack of microscopic empirical data these models have not been validated nor have the underlying assumptions been
evaluated. In addition, no insights have been presented on the variability in merging behaviour, neither to show the effect
of the road configuration nor to identify the cultural effect in driver behaviour.

The aim of this paper is therefore threefold. First of all, we compare merging behaviour on a site in the Netherlands to a
site in France using microscopic empirical data. Secondly, using these empirical data and the results of the behavioural com-
parison we evaluate the assumptions of gap acceptance theory (underlying most of the developed merging models). After
having observed that the gap acceptance theory is not able to reproduce the observed rejection of large gaps, we propose
a model for accepting or rejecting a gap during a merging manoeuvre. This model is based on a logistic regression. The pre-
dictive power of the model, assessed on the two datasets, is 98%.

The empirical data have been obtained using a camera mounted underneath a helicopter. Using dedicated software the
images have been stabilized and the trajectories have been automatically derived. As the trajectories have been obtained in a
similar way for both sites, the analyses errors are assumed to be comparable for both data sets. To analyse merging behav-
iour of both sites, both simple and composite statistics (e.g. joint regression analyses) have been performed.

This paper starts with an extensive literature overview on experimental analyses of merging behaviour and models on
merging behaviour. Then, a description is given of the data collection for Bodegraven (the Netherlands) and Grenoble
(France). In chapter 4 the empirical data analyses are presented, starting with a conceptual framework containing our
hypotheses on the merging behaviour (Section 4.1), followed by the global descriptive analyses (Section 4.2). Then, some
particular relationships are studied in more detail, such as the relation between lengths of accepted/rejected gaps and merg-
ing location (Section 4.3), the relation between accepted gap and headway versus merging speed (Section 4.4), and the rela-
tion between merging speed and merging location (Section 4.5). Chapter 5 provides strong empirical evidence to reject the
gap acceptance theory. In chapter 6 we therefore propose a model to predict acceptance or rejection of gaps based on the
longitudinal position, the length of the gap and the difference in speed of the three vehicles involved into a merge: the puta-
tive leader, the putative follower and the merger. The paper ends with conclusions and recommendations for future research.
2. Literature review on experimental analyses and models for merging behaviour

This chapter discusses the existent literature on merging behaviour. Here, we start with an indication of the importance of
merging behaviour in traffic operations (Section 2.1), followed by an overview of the experimental analyses of merging
behaviour (Section 2.2). In Section 2.3 an overview of the merging models has been given, while Section 2.4 gives an over-
view of the definitions of the critical gap as applied in the most frequently used theory, the gap acceptance theory. We end
with conclusions on the literature review.
2.1. Importance of merging behaviour in traffic operations

It is well known, and reported in many papers, that merges are one of the causes of motorway bottlenecks. Various char-
acteristics of merges can be studied. Some authors concentrate on capacity sharing modelling and observations between the
two entrances (Daganzo, 1995; Bar-Gera and Ahn, 2010; Chevallier and Leclercq, 2007). Other authors focus on the capacity
drop caused by the merge i.e. the fact that when a merge is an active bottleneck, the total capacity is lower than what is
observed in free flow (for examples of observations of this phenomenon, see Elefteriadou et al., 1995, 2006; Hall and Agye-
mang-Duah, 1991; Chung et al., 2007). Others look at the impact lane changes, and especially those observed at merges, can
have on stop and go waves (Laval, 2005; Oh and Yeo, 2012).

The fact that numerous queues occur in merges led traffic managers to propose ramp metering strategies, which are re-
ported to be effective. The most recent on-site experimentation is reported in Bhouri et al. (2013) where they observed that
the mean loss time is reduced by 3 min using control. Also the buffer time is significantly reduced.

All those researches convincingly show the importance of correct merge behaviour analyses.
2.2. Experimental analyses of merging behaviour

Fig. 1 illustrates the various variables characterising the merging process. We focus here on the merging vehicle and the
vehicles surrounding him/her. We leave out the mainline drivers’ lane choice modification i.e. courtesy lane changing. The
merging behaviour cannot be correctly observed through point-located measurement devices such as electromagnetic loops.
Therefore, authors of papers presenting phenomenological observations of the merging behaviour use trajectory measure-
ment devices. A trajectory in our case is the set of positions occupied in the (x,y) plane over time. Two trajectory measure-
ment methods exist: either measuring the trajectory of the merger with an equipped vehicle (using GPS) or measuring
trajectories outside of the vehicle, from video camera recordings.

A few papers were published on experimental observation of lane changers’ trajectories at merge locations. Tables 1a and
1b recall the main merging characteristics presented in these papers. Some papers use instrumented vehicles (Kondyli and
Elefteriadou, 2010, 2011; Sarvi and Kuwahara, 2007) where the trajectory of the subject vehicle is estimated from GPS data.
The GPS device is accompanied with a set of devices allowing to capture the position of the neighbouring vehicles. This



Table 1a
Papers presenting experimental analysis of merge behaviours, using mostly video camera information. (L, F, M stands for leader, follower and merger,
respectively, MM for Merging Manoeuvres and RM for ramp metering).

Paper Hidas (2005b) Choudhury et al. (2006) Sarvi et al. (2002)

Location Sydney CBD (Aus) section(s?)
of about 80–100 m

NGSIM datasets.I80 Emeryville, US101
Los Angeles, CA (USA)

Tokyo Metropolitan expressway (JP).
Junctions Hamazaki-bashi and
Inchinohachi for video analysis; second
one only for instrumented vehicle

Traffic conditions Congestion Congestion Congestion
Number of lanes of the

motorway (of the ramp)
Not given 6 (1) 2 (2)

Type of data collection
device

Video recording from traffic
surveillance

Video mounted on a high building Video mounted on
high buildings

Instrumented
vehicle

Number of observed merges 73 Not given 200 Not given
Number of different drivers 73 Not given 200 (159 cars and

41 trucks)
Not given

Duration of the
measurement periods

4 h 3 � 15 min 8 h (from which
some MM were
selected)

Not given

Time frequency of
measurements

0.2 s 0.1 s 0.15 s Not given

Precision of measurements 1 m (positions of vehicles) 1 m (positions of vehicles) Not given Not given
Variables used for analysis L, F, M: instant. V, relative V,

gaps (lead and lag)
L, F, M: instant. X, V, A, relative V, gaps
(lead and lag), longitudinal position of
the merge

L, F, M: instant. X,
V, A

L, F, M:mean speeds
in two zones of the
merge

Fig. 1. Description of the variables of a merging process.

Table 1b
Papers presenting experimental analysis of merge behaviours using mostly instrumented vehicle information. (L, F, M stands for leader, follower and merger,
respectively, MM for Merging Manoeuvres and RM for ramp metering).

Paper Kondyli and Elefteriadou (2010,
2011)

Wu et al. (2007)

Location I-95 Jacksonville, FL (USA): five
different merges

M27 Junction 11, Southampton
(UK)

Traffic conditions 273 merges in free flow; 42 in
congestion

Almost free flow

Number of lanes of the
motorway (of the ramp)

3 (1 or 2, depending on the ramp) 3 (2)

Type of data collection
device

Instrumented vehicle 11 video cameras Instrumented vehicle

Number of observed merges 315 Camera not used to assess
merger behaviour but passing
traffic

78 without RM and 88 with RM

Number of different drivers 31 Not given
Duration of measurement

periods
1 h � 31 2 � 14 days (with and without RM)

Time freq. of measurements 0.5 s 0.1 s
Precision of measurements Not given Not given
Variables used for analysis X, V of IV + lead and lag gaps (from

which relative V and A are extracted)
X, V of IV + relative distance and speed of L
and F, longitudinal position of the merge
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experimental device led the authors to focus on the value of accepted gaps and not on the rejected ones, which could be
accessed with more difficulties.

In all papers presented in the tables, the data analysis work was conducted with the aim of defining and calibrating a
model. In the merge paper of Hidas. (2005b), one of the conclusions was the distinction between three types of merges: free
lane change, forced lane change and cooperative lane change. For the free lane change, the author explains that provided that
the lead and the lag gaps ‘‘are not less than some given acceptable space gaps’’ the gap will be accepted. Choudhury et al.
(2007) and Kondyli and Elefteriadou (2010, 2011), observe the acceptance of a gap and they do not consider the gap rejec-
tion. Sarvi and Kuwahara (2007) focus on the acceleration and deceleration phase of the merger. For this, they combine two
types of information (intra-vehicle data collection and video data collection) to calibrate their model of acceleration and
deceleration of the vehicles during the merge process. Wu et al. (2007) study the impact of ramp metering on the driver’s
behaviour, both on the passing traffic and on the merger. They conclude that ramp metering has no impact on the passing
traffic, but it has some effect on the merging characteristics: the presence of ramp metering increases the accepted gap size
and reduces the merger speed.

None of the above presented papers analysed the data in observing the rejected gaps: the gaps a merger could have cho-
sen (because they are present when he/she drives along the acceleration lane, but he/she prefers driving ahead and inserts
himself into a another gap downstream, see Fig. 1). In the case of instrumented vehicles this is rather logical, because the
relative distance with the putative leader and the putative follower becomes measurable only when the merger is located
in between, but when a complete set of trajectories is attainable (from the NGSIM dataset for example), this is more
surprising.

Finally, we have to mention a recent paper (Daamen et al., 2010) that scrutinises for the first time the statistical relations
between various observable variables: longitudinal position of the merge, time headway, etc. For the first time, this paper
also puts into evidence that some drivers reject acceptable gaps before merging. We see hereafter a confirmation of this
important point.

Each of the papers listed above present data collected at a single location; even if Kondyli and Elefteriadou (2010) gather
data on five different ramps, they are all located in the same motorway and the same city. Therefore, we cannot use those
papers to evaluate if there is a country related way of merging. We will hereafter compare two data sets, one obtained in the
Netherlands and already used by Daamen et al. (2010), the other one obtained inside the MOCoPo project in Grenoble, France
(MOCoPo, 2012).

2.3. Merging behaviour models

When modelling merging behaviour, several techniques can be distinguished. Most models are based on gap acceptance
theory, but also models based on game theory and discrete choice modelling have been developed. In the following, a short
overview is given of the models developed using these techniques.

Let us concentrate on the main part of the literature: models based on gap acceptance theory. The principle of the gap
acceptance theory is that a driver assesses an offered gap (distance or time between two vehicles on the main road that
it is driving next to). In this assessment, the gap is compared to a so-called critical gap: if the offered gap is larger than
the critical gap the gap will be accepted, otherwise it is rejected and the driver will look for another offered gap (Barceló,
2010). The critical gap depends on the characteristics of the traffic participant, the vehicle and the road, and can be expressed
either in time or in distance.

The first models using gap acceptance simplify the complex dynamic interaction between the motorway traffic and the
ramp traffic by assuming the ramp traffic has no influence on the motorway traffic (Michaels and Fazio, 1989; Yang and
Koutsopoulos, 1996; Lee, 2006). Existing simulation models (e.g. Aimsun and Vissim) are often based on a relatively simple
gap acceptance model (Xiao et al., 2005). For Vissim the exact gap acceptance model is not specified, but the increased ur-
gency to merge towards the end of the acceleration lane is expressed in the aggressiveness of the driver (PTV, 2008). The gap
acceptance behaviour in Vissim is user-definable and location specific (Bloomberg and Dale, 2000). The merging model in
Aimsun can be considered as a further evolution of the Gipps lane change model (Barceló and Casas, 2005), with some extra
parameters (reaction time, maximum waiting time, time distance on ramp) to indicate the growing urgency to change lanes
when reaching the end of the merging lane and with increasing waiting times (Hidas, 2005a). When reaching an off-ramp,
vehicles in the adjacent lane can modify their behaviour in order to allow a gap large enough for the lane-changing vehicle
(Barceló and Casas, 2005), but it is not clear whether the same behaviour holds for merging vehicles.

In Sarvi and Kuwahara (2007), it is reported that none of the most frequently used commercial simulation tools is able to
correctly reproduce the traffic behaviour near merges, especially in congested situations: for example PARAMICS underes-
timates the capacity, while Aimsun and Vissim tend to let vehicles disappear from the ramp after some blocking time.

As shown in the previous section, motorway traffic indeed shows cooperative behaviour by performing cooperative lane
changing or yielding to create gaps. Several models have specifically been developed to model cooperative lane changing
(Hidas, 2002) and forced merging behaviours (Ahmed, 1999; Rao, 2006). Hidas (2005b) developed a merging model that in-
cludes both cooperative and forced merge components, but the cooperative lane change part only consists of modelling the
decision of the lag driver (whether or not to provide courtesy to the merging driver). Choudhury et al. (2007) includes the
decision on cooperative lane change behaviour of the merging driver (whether or not to initiate or execute the courtesy lane
change), but the lag driver behaviour is not included explicitly. However, many of the estimated coefficients do not seem to
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be significant. Inclusion of target gap choice and speed adjustment to reach a targeted gap in the decision framework of the
merging driver can help in improving the match of speed as well as ensuring a better simulation of the location of merges
(Choudhury et al., 2007).

Kita and Fukuyama (1999) and Kita and Keishi (2002) were one of the first to model vehicle interactions during merging
as a game, where each vehicle involved in the merge determines its actions by considering the other vehicles’ alternatives.
Collision risk is one of the factors the decisions are based on. However, the vehicle speeds are assumed constant during the
merging process, which the previous section shows to be incorrect. In addition, the motorway vehicle may have performed
cooperative behaviour before actually interacting with the merging vehicle. Wang et al. (2005) use the game theory idea pro-
posed by Kita and Keishi (2002) and explicitly add both the nearside motorway traffic actions and the remaining distance to
the end of the merging lane. In this model, both the probabilities for cooperative lane changing and for courtesy yielding are
described as binomial distributions. Liu et al. (2007) developed an improved game-theoretic framework, in which vehicle
speeds are no longer assumed constant, while minimum safety gaps are explicitly considered in the drivers’ payoff functions.
In addition, more realistic behavioural rules are proposed, such as motorway vehicles trying to maintain their initial car-fol-
lowing state and to minimise speed variations, while merging vehicles try to merge as fast as possible, subject to safety con-
straints. The drawback of this model is that the game only involves the merging vehicle and the lag vehicle; other vehicles on
the motorway are left out of the process.

Kondyli and Elefteriadou (2011) model both cooperative and forced merge components, where the cooperative part can
be initiated both by the merging driver and by the lag driver. They use a discrete choice framework to model the various
model components, where the model has been split into a gap acceptance model, a deceleration model (one for cooperative
merging and one for free merging) and a merging turbulence model.

2.4. Critical gap definition in literature

The overview of various merging behaviour models has shown that most models are based on gap acceptance theory,
while the formulations of the critical gap as well as its dynamics vary per model. This section gives more details on the crit-
ical gap used in each model, starting with an overview of influence factors per model in Table 2.

Although most authors indicate which factors have an influence on the critical gaps, the exact formulas to calculate these
critical gaps are not always given. The only papers giving the formulas estimated using empirical data are Ahmed (1999), Lee
(2006), Rao (2006) and Choudhury et al. (2007). As Choudhury et al. (2007) build upon the other three papers and includes
the most extensive model, we limit ourselves to the formulas estimated in this paper, which is used as basis for the compar-
ison of empirical data and gap acceptance models in chapter 5.

The paper does not only distinguish between normal, courtesy and forced merging, but the critical gap has been split into
a lead gap and a lag gap, that is, a gap between the putative leader vehicle and the merging vehicle and a gap between the
merging vehicle and the putative following vehicle respectively. Eq. (1) shows the equation for the lead gap GiLead

nt , while the
lag gap GiLag

nt is given in Eq. (2):
GiLead
nt ¼ exp

cilead þ 1:32
1þexp 0:420þ0:355tnð Þdnt þ 0:521 1þ 1

1þexpð�Maxð0;DVavg
nt ÞÞ

� �

�0:505Minð0;DVlead
nt Þ þ ailead

nt tn þ eilead
nt

0
@

1
A ð1Þ

GiLag
nt ¼ exp

cilag þ 0:439
1þexp 0:0242þ0:00018tnð Þdnt þ 0:208Maxð0;DVlag

nt Þ

þ0:184Min 0;DVlag
nt

� �
þ 0:0545Maxð0; alag

nt Þ þ ailag
nt tn þ eilag

nt

0
@

1
A ð2Þ
where i 2 fnormal; courtesy; forcedg, cilead and cilag are lead and lag gap constants for merge type i, dnt is the remaining dis-
tance to the end of the acceleration point (expressed in multiples of 10 m), DVavg

nt is the relative speed of the average speed
on the motorway with respect to the merging vehicle (in m/s), DVlead

nt and DVlag
nt are relative speeds of the putative leader vehi-

cle and the putative follower vehicle with respect to the merging vehicle (in m/s) respectively, alag
nt is the acceleration of the

putative follower vehicle, and eilead
nt and eilag

nt are random error terms: eilead
nt � Nð0;r2

ileadÞ, eilag
nt � Nð0;r2

ilagÞ (Choudhury et al.,
2007). The estimation on the data leads to the coefficients for the three merging types in Table 3.

From Table 3 it can be seen that not all coefficients have been significantly estimated, especially for the courtesy merges,
probably due to the size of the dataset.

2.5. Conclusions

We have seen that ramps are very often reported as one of the main causes of motorway congestion. This type of infra-
structure can be studied with the help of lane by lane flow analysis. It is suspected by most authors that the disturbance
created by the merge into the mainline flow is also a key factor of the traffic characteristics near ramps, especially the capac-
ity drop. Therefore understanding the way how vehicles insert themselves from the acceleration lane towards the main
motorway section is a necessity which is now accessible, thanks to the detailed trajectory data provided by helicopter video
collection.



Ta
bl

e
2

In
flu

en
ce

fa
ct

or
s

fo
r

th
e

cr
it

ic
al

ga
p.

M
od

el
A

ve
ra

ge
sp

ee
d

on
m

ai
n

ro
ad

Sp
ee

d
of

m
er

gi
n

g
ve

h
ic

le

Sp
ee

d
of

pu
ta

ti
ve

fo
ll

ow
in

g
ve

h
ic

le

Sp
ee

d
of

pu
ta

ti
ve

le
ad

er
ve

h
ic

le

R
el

at
iv

e
sp

ee
d

of
th

e
av

er
ag

e
m

ai
n

li
n

e
sp

ee
d

w
it

h
re

sp
ec

t
to

th
e

m
er

gi
n

g
ve

h
ic

le

R
el

at
iv

e
sp

ee
d

of
th

e
pu

ta
ti

ve
le

ad
er

ve
h

ic
le

an
d

th
e

m
er

gi
n

g
ve

h
ic

le

R
el

at
iv

e
sp

ee
d

of
th

e
pu

ta
ti

ve
fo

ll
ow

in
g

ve
h

ic
le

an
d

th
e

m
er

gi
n

g
ve

h
ic

le

A
cc

el
er

at
io

n
of

m
er

gi
n

g
ve

h
ic

le

A
cc

el
er

at
io

n
of

pu
ta

ti
ve

fo
ll

ow
in

g
ve

h
ic

le

A
cc

el
er

at
io

n
of

pu
ta

ti
ve

le
ad

er
ve

h
ic

le

R
em

ai
n

in
g

di
st

an
ce

on
ac

ce
le

ra
ti

on
la

n
e

A
gg

re
ss

iv
en

es
s

of
fo

ll
ow

in
g

ve
h

ic
le

C
h

ar
ac

te
ri

st
ic

s
of

m
er

gi
n

g
dr

iv
er

R
ea

ct
io

n
ti

m
e

M
ax

im
u

m
gi

ve
-w

ay
ti

m
e

Sa
fe

ty
di

st
an

ce
re

du
ct

io
n

fa
ct

or

M
ax

im
u

m
ac

ce
pt

ab
le

ac
ce

le
ra

ti
on

fo
r

m
er

gi
n

g
ve

h
ic

le
an

d
pu

ta
ti

ve
fo

ll
ow

in
g

ve
h

ic
le

A
h

m
ed (1
99

9)
x

x
x

x

Le
e

(2
00

6)
x

x
x

x
x

R
ao

(2
00

6)
x

x
x

x
x

C
h

ou
dh

u
ry

et
al

.
(2

00
7)

x
x

x
x

x

H
id

as (2
00

2)
x

x
x

x
x

x

H
id

as (2
00

5b
)

x
x

x
x

x
x

x

A
im

su
n

(B
ar

ce
ló

an
d

C
as

as
,

20
05

)

x
x

V
is

si
m (P
TV

,
20

08
)

x
x

x
x

F. Marczak et al. / Transportation Research Part C 36 (2013) 530–546 535



Table 3
Coefficients for lead and lag gaps (Choudhury et al. (2007)).

t-Statistics t-Statistics t-Statistics

Normal merge

cnormal lead ¼ �0:230 �0.33 anormal lead
nt ¼ �0:819 �3.12 enormal lead

nt � ð0;3:422Þ 9.67

cnormal lag ¼ 0:198 2.87 anormal lag
nt ¼ �0:0000776 �0.01 enormal lag

nt � ð0;0:8402Þ 3.03

Courtesy merge

ccourtesy lead ¼ �0:582 �0.20 acourtesy lead
nt ¼ �0:0540 �0.03 ecourtesy lead

nt � ð0;0:01092Þ 0.08

ccourtesy lag ¼ �1:23 �0.07 acourtesy lag
nt ¼ �0:0226 �0.04 ecourtesy lag

nt � ð0;0:5542Þ 0.05

Forced merge

cforced lead ¼ 3:11 2.11 aforced lead
nt ¼ �0:0401 �0.07 eforced lead

nt � ð0;7:952Þ 5.82

cforced lag ¼ �2:53 2.11 aforced lag
nt ¼ �0:0239 0.19 eforced lag

nt � ð0;0:4652Þ 2.49
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From the detailed literature review above, we can summarise the following key findings:

� Depending on the traffic conditions (free/congested flow) and the space availability on the shoulder lane, the merger will
choose among various merges types: normal merge, forced merge or, if the motorway drivers adapt their speed and dis-
tances in between, courtesy merge.
� Most of the models rely on the idea that each gap bigger than a critical gap will be accepted. Some papers give an explicit

formula of those critical gaps.
� No comparison between two sites was realised in the papers we have the opportunity to refer to.
� None of the papers listed above is studying the rejection of some gaps whose length might be bigger than the length of the

gap the driver will finally chose to insert into.

As the merging process is disturbing the motorway traffic, one can imagine that if a significant part of the mergers reject
gaps that are bigger than the ones they finally accept, the merging process will be even more disturbing than if all of them
insert him/herself into the largest gap. Thus, observing this phenomenon is of importance for the understanding of the con-
gestion occurring on motorways.
3. Data collection

To study merging behaviour in more detail, empirical data have been collected at a microscopic level, describing the po-
sition of every vehicle at every time step (trajectories of each individual vehicle). The data have been collected using the heli-
copter technique developed by Hoogendoorn et al. (2003). This technique uses a high resolution digital camera mounted
underneath a helicopter gathering successive images. The length of road stretch that can be captured by the camera depends
on the flying height of the helicopter, but its practical length is about 450 m. Data have been collected at two different sites,
one in the Netherlands (Bodegraven) and one in France (Grenoble). This way not only the effects of different roadway con-
figurations, but also differences in driver behaviour may be investigated. Section 3.1 gives a more detailed overview of the
two collection sites, while Section 3.2 provides insight into the data collection technique, which was similar for both sites. In
Section 3.3 the traffic conditions and other meta data are given for both sites.
3.1. Data collection sites: Bodegraven (the Netherlands) and Grenoble (France)

The data have been collected in Bodegraven (the Netherlands) and France (Grenoble) respectively. Fig. 2 shows the road
configuration of both layouts.

In the Netherlands, the data collection site is located at the motorway A12 from Gouda to Utrecht. The acceleration lane
has a length of 283 m, of which the first 200 m has a constant width, after which the acceleration lane starts to narrow down.
The maximum speed on the main road is 120 km/h. The maximum speed on the road leading towards the acceleration lane is
100 km/h. The connecting road towards the acceleration lane is constructed in such a way that no speed reduction is re-
quired. The frog of the acceleration lane is extended with a stretch of about 50 m of a solid separation line between the accel-
eration lane and the main road. Then the block marking starts. On the main road the line marking between the right and
middle lane is designed in such a way that a lane change from the middle to the right lane is prohibited but a lane change
from the right lane to the middle lane is allowed, thus cooperative lane changes are still possible.

In Grenoble, the data collection site is the junction between the motorways A41 and RN87, in the south-eastern part of
the city. The acceleration lane has a total length of 210 m with a progressive narrowing in the last 120 m. The speed limit is
90 km/h. As can be seen in Fig. 2b, the on-ramp is significantly curved at the beginning, but the drivers are able to accelerate
before entering the ramp itself. 2 km upstream of the ramp, a traffic signal creates platoons of vehicles. Therefore, arrival
pattern at the on-ramp is characteristic.



Fig. 2. Data collection site of (a) Bodegraven and (b) Grenoble. (a) Data collection site Bodegraven. (b) Data collection site Grenoble.
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3.2. Data collection technique

As stated before, microscopic empirical data have been collected using a video camera attached underneath a helicopter.
During a long period of time (35–60 min) the helicopter hovered above the on-ramp while recording a video with a frame
rate of 15 (Bodegraven) or between 10 and 30 (Grenoble) images per second. As it is impossible for the helicopter to hover at
a stable position (due to changing winds, minimal instability of the hands of the pilot and the natural willingness of the heli-
copter to fly forward), the first step is to stabilise the images. This stabilisation has been performed using a dedicated tool
called ‘ImageTracker’ developed at the Delft University of Technology (Knoppers et al., 2012). The next step is to recognise
the vehicles in the stabilised images.

This is done in three steps. First, a mean background image is defined and subtracted from each image. Then, the pixels
differing from the background are identified and grouped into ‘‘blobs’’. Finally, ‘‘blobs’’ present in successive images are
linked into trajectories of a given vehicle.

3.3. Traffic conditions and other meta-data

In Bodegraven, the weather conditions during the whole data collection of 35 min on the 24th of April 2008 were dry,
clouded and the viewing distance was good (Loot, 2009). The observations started at 15:00, when a high flow was present
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Fig. 3. Traffic conditions in Bodegraven (on the left) and Grenoble (on the right).
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on the motorway, but no congestion occurred. The amount of traffic on the on-ramp is relatively high. After about 15 min a
stop and go wave passed the observation location with a typical speed, coming from a downstream position. Shortly after the
stop and go wave passed, congestion occurred around the on-ramp.

The weather conditions, as well, were dry and clouded for the Grenoble data collection period (14th of September 2011).
The traffic is congested with a speed around 10 m per second. As said before, the merging traffic here is pulsed by the traffic
signal present upstream on the merging incoming link. We chose to focus our data collection on periods where the merging
traffic is sufficient to permit a correct study of the merging behaviour. Therefore, the data analysed and presented below are
not continuous in time, but the traffic conditions are rather homogeneous across the observation periods.

The traffic conditions on both sites are shown in Fig. 3. Where traffic on the main motorway in Bodegraven is observed
both in free flow and in congested conditions, the observations in Grenoble are restricted to congested conditions. In order to
be able to compare the two sites, the remainder of this paper considers merging behaviour in congested conditions only.

4. Empirical data analyses

In this chapter we analyse the merging behaviour using datasets collected in Bodegraven and Grenoble respectively. In
order to structure the data analyses, we start by introducing a conceptual framework describing the merging behaviour
in Section 4.1. In this framework, the influencing factors on merging behaviour are defined, which are the basis of the
descriptive analyses presented in Section 4.2. Then, some particular relationships are studied in more detail, such as the rela-
tion between lengths of accepted/rejected gaps and merging location (Section 4.3), the relation between accepted gap and
headway versus merging speed (Section 4.4), and the relation between merging speed and merging location (Section 4.5).

4.1. Conceptual framework

Based on the literature study described in chapter 2 we have composed a conceptual model describing merging behav-
iour, see Fig. 4. In this model, the input of the decision to merge consists of the offered gaps, the road configuration (with the
length of the acceleration as most important characteristic) and the characteristics of the merging driver. The output of the
decision are the accepted gap and the rejected gaps, in case more than one gap was offered. When a gap has been accepted,
also the location of this gap on the acceleration lane as well as the speed of the merging vehicle at the time of merging are
decided, and thus outcomes of the decision process. The offered gaps are a result of the traffic conditions on the main road,
and particularly on the shoulder lane, the speed and acceleration of the vehicles composing the gaps (putative leader and
putative follower) and possible cooperative behaviour of vehicles on the main road, such as cooperative lane changing
and courtesy yielding.

From this conceptual model, it is possible to derive the influence factors. Instead of making a long list of variables, we
have chosen to structure these according to characteristics of the accepted gap, the road configuration, the offered gap
and the traffic conditions (see Table 4).

In the next section, we perform some descriptive analyses on these influencing factors. For this, we focus on the charac-
teristics of the accepted gap, the road configuration and the offered gaps, as these characteristics will most likely have a di-
rect effect on the merging decision. Due to the accuracy of the data, we do not analyse the vehicle accelerations. In addition,
Fig. 4. Conceptual framework of merging behaviour.



Table 4
Influence factors for the merging behaviour.

Accepted gap Rejected gap(s) Road configuration Offered gap Traffic conditions

Gap length (in m) Gap length (in m) Length acceleration lane Speed putative follower Density main road
Headway (in s) Headway (in s) Speed putative leader Speed main road
Location Acceleration putative follower Congestion/free flow
Speed merging vehicle Acceleration putative leader
Vehicle type
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the vehicle types are not studied, as in Grenoble the traffic mainly consists of passenger cars, so statistical analyses on heavy
vehicles are not possible. This leads to the following analyses:

� Length of accepted and rejected gap (in m) – merging location.
� Speed merging vehicle – length accepted gap (in m).
� Speed merging vehicle – headway (in s).
� Speed merging vehicle – merging location.

4.2. Descriptive analyses

As indicated in the previous section, this section shows descriptive analyses on the data describing merging behaviour in
congested conditions in Bodegraven and Grenoble. To see whether the merging behaviour differs between the two sites we
start the analyses by showing the cumulative curves of the length of the accepted gap, the length of the rejected gap(s), the
merging position and the speed of the merging vehicle, see Fig. 5.

Both the accepted gaps and the rejected gaps are larger for Bodegraven than for Grenoble, only the largest rejected gaps
are similar for both sites. In addition, the variation in accepted gaps is much higher in Bodegraven than in Grenoble, which is
most likely due to the traffic conditions (severity of congestion) on the main road. The merging position is expressed relative
to the length of the acceleration lane, as this length is longer for Bodegraven (283 m) than for Grenoble (210 m). According to
the figure, the merging positions are better distributed along the acceleration lane in Bodegraven than in Grenoble, where
more vehicles seem to merge near the middle of the acceleration lane. The merging speed in Bodegraven is about 3 m/s high-
er than in Grenoble, as the cumulative curve is as a whole more shifted towards the higher speeds. The shape of the curve is
similar for both sites.

After these first insights into the different behaviours at both sites, we continue with analyses of multiple factors, to see
whether we can find a relation between these. For these analyses we focus on the factors directly describing merging behav-
iour, that is, the factors in the three most left columns of Table 4.
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4.3. Relation between the length of the accepted/rejected gap and the merging location

We start these analyses with the relation between the length of the accepted gap and the rejected gap and the location of
the merge, see Fig. 6. The first immediate conclusion we can draw is that there is a concentration of rejected gaps. However,
the location of the concentration is different for Bodegraven and Grenoble: where in Bodegraven the rejected gaps are in gen-
eral shorter than the accepted gaps over the total length of the acceleration lane (as one would in general expect), in Gre-
noble the rejected gaps are concentrated at the beginning of the acceleration lane. Towards the end of the acceleration lane
in Grenoble not many rejected gaps are present: it appears that when a gap is present, it is immediately accepted, indepen-
dent of its length. In both locations rejected gaps are scattered with the accepted gaps, clearly showing inconsistent choice
behaviour between drivers and maybe even within drivers.

4.4. Accepted gap and headway versus merging speed

The next analysis deals with the relation between accepted gap and merging speed, see Fig. 7. First of all, we can see that
the observed merging speeds in Grenoble are smaller than the observed speeds in Bodegraven, which is mainly due to the
congested conditions on the main road. For the Grenoble dataset, the variance in accepted gap seems to increase with
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increasing speed, while in Bodegraven this variance seems to remain constant (although less data points are observed for
lower speeds). However, at both sites a slightly increasing trend can be observed: in general the accepted gaps are more
or less constant at lower speeds and increase with increasing speed. In Grenoble, the accepted gap is shorter than in Bodeg-
raven, although at larger speeds (>18 m/s) this difference seems to fade away. One could therefore argue that this difference
is not so much a cultural or behavioural difference, but caused by the different traffic conditions. The occurrence of severe
congestion on the main road forces drivers to accept a shorter gap than they would have been willing to accept.

Fig. 8 shows the relation between headway and merging speed. Apart from the fact that the observations in Bodegraven
are concentrated on the right hand side of the figure (high merging speeds) and the observations in Grenoble on the left hand
side of the figure (low merging speeds), the headways do not seem to differ much. Also, the large variance in observed head-
ways seems to be similar for both sites, and independent from the merging speed.
4.5. Relation between merging speed and merging location

The final analysis shown in this section is the relation between merging speed and merging location, see Fig. 9. The figure
clearly shows the large variance in merging speeds, without any relation to the merging position. This holds both for the site
of Bodegraven and for the site of Grenoble. It is not possible to identify a difference in merging speed towards the end of the
acceleration lane.
5. Validation of gap acceptance theory

This chapter discusses the validity of the gap acceptance theory based on the analyses on the empirical data shown in the
previous chapter. We choose to evaluate the gap acceptance theory, as our literature review shows this theory has been most
frequently applied in literature.
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As the gap acceptance theory assumes consistent driver behaviour, rejected gaps will not be larger than accepted gaps,
which has already been refuted in Daamen et al. (2010). The theory also implies that if no gaps are offered larger than a crit-
ical gap, the vehicle will reach the end of the acceleration lane without having found a gap, and thus without having merged.
This effect is clearly visible in microscopic simulation tools, where queues start to build up at the end of the acceleration
lane. However, Fig. 9 does not show a decreased speed when merging at the end of the acceleration lane (which would
be the consequence of such a queue) nor did the images show that any vehicle was not able to merge.

As stated in the literature review, Choudhury et al. (2007) are one of the few authors explicitly describing the critical gap
relation. Fig. 10 represents both experimental observations and critical gap value curves resulting of the critical gap model
(Choudhury et al., 2007). The meaning of the gap acceptance model is that below the continuous (respectively dashed) line,
every gap is under critical and predicted to be rejected by an aggressive (respectively timid) driver. On the other hand, every
gap present above the critical gap line should be accepted by a driver. Although in the observed data the type of driver cannot
be identified, it is clear that the critical gap lines do not distinguish the accepted gaps from the rejected gaps. It would also
imply that the driver population in Grenoble is very aggressive, as none of the rejected gaps are located on top of the critical
gap line of timid drivers, whereas in Bodegraven, several rejected gaps can be found at the end of the acceleration lane that
are rejected.
6. Generalised linear model to calculate probabilities to reject or accept gaps

This section presents a generalised linear model to quantify the influencing factors on the probability whether drivers
accept or reject a certain gap. Two types of gaps are observed in the data (see Table 5):

� Accepted gaps correspond to the net distances between the putative leader and the putative follower in which vehicles
merge coming from the acceleration lane;
� Rejected gaps correspond to the net distances between two vehicles on the shoulder lane which are passed by vehicles

driving on the acceleration lane, which merge further downstream and thus reject these offered gaps.
Table 5
Sample sizes for both datasets.

Number of accepted gaps Number of rejected gaps Total

Bodegraven 377 100 477
Grenoble 242 117 359
Total 619 217 836
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Based on these gaps we construct a binary variable Y which equals 1 when an offered gap is accepted and 0 when the gap
is rejected.

We extract from our datasets the following variables: position of the vehicle on the acceleration lane at the moment a gap
is offered, offered gap length, positions of the putative leader and the putative follower, speed difference of merging vehicle
and putative follower and speed difference of putative leader and putative follower. Using these variables, we apply an
explanatory statistical method, the so-called Principal Component Analysis (PCA) (Govaert, 2009), to find the correlation be-
tween all variables extracted from the datasets. We thus identified the most contributing variables, being:

� Xpos: the position on the acceleration lane, measured from the start of the acceleration lane.
� Xgap: the offered gap, that is, the distance between the putative leader and the putative follower on the shoulder lane

which could be used to merge by the vehicle driving on the acceleration lane.
� XDVPL�PF : the difference in speed between the putative leader and the putative follower.
� XDVMV�PF : the difference in speed between the merging vehicle and the putative follower.

The explanatory variables are normalised to establish a comparison between the various variables. The gap is normalised
for each driver as it strongly depends on the traffic conditions and it would be difficult to analyse the results of a normal-
isation to the maximum gap identified in the total data set, as this gap occurs in near free flow conditions while drivers merg-
ing in highly congested conditions will not meet such large gaps. As the speed differences can be negative, the normalised
values of the speeds are between �1 and 1.

A type of generalised linear model is performed to quantify the influence of the explanatory variables
X ¼ ðXpos;Xgap;XDVPL�PF ;XDVMV�PF Þ on the dependent variable Y. What is needed is a probability, i.e. a function that takes every
value between 0 and 1. The logit function and the probit function are two classical functions which fulfil these conditions.
Both the probit model and the logit model lead in practice to the same results.

Similar to Kita (1993), we choose a regression using a logit function (or simply logistic regression). The expression in our
case is the following:
Table 6
Results

Coef

b0

bpos

bgap

bDVPL

bDVM
ln
pð1jXÞ

1� pð1jXÞ ¼ b0 þ bposXpos þ bgapXgap þ bDVPL�PF
XDVPL�PF þ bDVMV�PF

XDVMV�PF ð3Þ

pð1jXÞ ¼
exp b0 þ bposXpos þ bgapXgap þ bDVPL�PF

XDVPL�PF þ bDVMV�PF
XDVMV�PF

� �

1þ exp b0 þ bposXpos þ bgapXgap þ bDVPL�PF
XDVPL�PF þ bDVMV�PF

XDVMV�PF

� � ð4Þ
where pð1jXÞ is the conditional probability that the offered gap is accepted ðY ¼ 1Þ given X.
The three main advantages of the logistic regression are:

� The use of the logit model does not imply any a priori knowledge about the shape of the data distribution. Indeed, a large
class of distributions (e.g. multivariate normal distribution, exponential distribution, Gamma distribution, Boolean distri-
bution, . . .) follows Eq. (3).
� The numerical implementation is easier.
� It gives asymptotically consistent parameters so that a t-test can be applied to evaluate the quality of the regression.

The results of the estimation of the coefficients for the Bodegraven data set are presented in Table 6 and for the Grenoble
data set in Table 7.

Tables 6 and 7 show that the confidence intervals contain zeros for the estimate of bpos in the Bodegraven data set and for
the estimate of bDVPL�PF

in the Grenoble data set, which implies that these coefficients have not been estimated significantly.
To test the significance of each individual coefficient a Student t-test has been performed with as null-hypothesis that the
coefficient equals 0. The p-value gives the probability that the coefficient is indeed 0. The p-values are in most cases below
the 5% threshold (that is, these elements play a role) except for the estimate of bpos in the Bodegraven data set and for the
estimate of bDVPL�PF

in the Grenoble data set, which are the coefficients for which the confidence intervals contain zeros. We
have performed two other logistic regressions removing the coefficients which have not been estimated significantly.
of the estimation of the coefficients using the Bodegraven data set.

ficients Value Standard Error Confidence interval
Lower bound

Confidence interval
Upper bound

t-Statistic p-Value

�5.3 1.6 �8.2 �2.3 �3.4 5.6e�4

2.2 1.3 �0.4 4.8 1.6 0.1
10.8 1.7 7.5 14.1 6.4 1.2e�10

�PF
5.8 2.1 1.6 9.9 2.7 6.4e�3

V�PF
�8.4 1.9 �12.2 �4.5 �4.2 2.1e�5



Table 7
Results of the estimation of the coefficients using the Grenoble data set.

Coefficients Value Standard Error Confidence interval Lower bound Confidence interval Upper bound t-Statistic p-Value

b0 �5.3 0.95 �7.2 �3.4 �5.6 2.1e�8

bpos 11.6 2.1 7.6 15.6 5.7 1.1e�8

bgap 3.9 0.9 2.1 5.8 4.1 3.7e�5

bDVPL�PF
0.9 1.1 �1.1 2.9 0.9 0.3

bDVMV�PF
�7.6 1.4 �10.5 �4.8 �5.2 1.2e�7
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Fig. 11 visualises the results of the coefficient estimation for all three regressions. The figures on the left show the esti-
mates of the coefficients for both data sets with the corresponding confidence interval, as discussed before. The figures on
the right show the quality of the model by plotting the Receiver Operating Characteristic (or simply ROC curve) which gives
the true positive rate versus the false positive rate. The larger the surface below the curve and the further the line is away
from the line indicating the random process (dotted line in the figure), the better the predictive value of the model.

In Fig. 11a one observes that the coefficients of the offered gap, the location of the gap and the speed difference between
the putative leader and the putative follower are positive. A larger gap, a gap located further towards the end of the accel-
eration lane and a larger speed of the putative leader with respect to the speed of the putative follower all increase the prob-
ability of accepting the gap.

The coefficient bDVMV�PF
is negative, which means that the lower the speed of the vehicle on the acceleration lane with re-

spect to the speed of the putative follower, the higher the probability to accept the gap. This result might seem strange, but it
is coherent with the findings from the data analyses since the rejected gaps are those gaps that have been passed by the vehi-
cle driving on the acceleration lane. Therefore, the speed of the vehicle on the acceleration lane is higher than the speed of
the putative follower. This same effect has been found by Choudhury et al. (2007).

For each variable the confidence interval can be compared for the two sites. This comparison shows that the importance
of speed differences (bDVPL�PF

and bDVMV�PF
) is not significantly different in both data sets (the confidence intervals partly over-

lap). However, the effects of the position of the gap ðbposÞ along the acceleration lane and the size of the gap ðbgapÞ are sig-
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Fig. 11. Results of the logistic regression for the Bodegraven and the Grenoble data set. (a) and (b) present the results for the logistic regression with all the
chosen explanatory variables. (c) and (d) (resp. (e) and (f)) show the results for the logistic regression without the position on the acceleration lane (resp. the
difference in speed between the putative leader and the putative follower).
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nificantly different. The position is more important in Grenoble than in Bodegraven, probably because of the shorter total
length of the acceleration lane in Grenoble. The size of the gap plays a more important role in Bodegraven than in Grenoble.

Further analyses can be conducted by removing the coefficients that have not been significantly estimated from the mod-
el, see Tables 6 and 7. For each of the two sites, we therefore remove one variable from the analysis: for Bodegraven we re-
move the position coefficient (Fig. 11c), while for Grenoble we remove the difference in speed between the putative leader
and the putative follower (Fig. 11e). Fig. 11d shows that, as expected, for Bodegraven the quality of the true positive rate is
not affected, but for Grenoble a decreasing predictive power is observed. For the second case, the predicting quality for the
Grenoble site has not changed, whereas a slight decrease is observed for Bodegraven.

The logistic regression model we presented above is based on normalised variables of longitudinal position, speed differ-
ences and gap length. We can compare both sites together, even if the difference among them is significant. As Kita (1993)
does not use the normalisation, we can only mention that the global tendencies are similar. We intend to expand the meth-
odology presented here to perform further data analyses and parameter estimates on sites with different characteristics
(among other things length of the acceleration lane, traffic composition and range of observed speeds).
7. Conclusions and recommendations for future research

In this paper we presented a comparative analysis of the merging behaviour on motorways of more than 600 mergers in
total, of which 242 in Grenoble (France) and 377 in Bodegraven (the Netherlands). Using detailed trajectory data, we were
not only able to analyse the accepted gaps, but also the rejected gaps for which we have a sample of more than 200.

We observed differences in the driver’s behaviour on the two locations: the merging drivers in Grenoble (France) tend to
be more aggressive, i.e. accepting smaller gaps than in Bodegraven (Netherlands). It is likely that this can be attributed to the
road geometry (the acceleration lane in Grenoble is shorter than in Bodegraven), and to the congestion level on the motor-
way, which is higher in Grenoble.

We hereafter used those data sets and results to compare with the formulas found in literature about the critical gap. This
critical gap is a threshold value: if a driver driving on the acceleration lane passes a gap on the shoulder lane larger than this
critical gap, it will accept it, otherwise it is rejected. We produce a strong experimental evidence of the inadequacy of this
theory with reality. Indeed some rejected gaps are over critical and should have been accepted according to those theories.

Therefore we proposed a stochastic model of gap rejection and acceptance. This was done after a logistic regression anal-
ysis of the merging behaviour, expressing the probability of accepting or rejecting a gap as a function of the distance towards
the end of the acceleration lane, the length in metres of the offered gap, the difference in speed between the putative leader
and the putative follower, and the difference in speed between the merging vehicle and the putative follower. Interesting to
note, the distance towards the end of the acceleration lane is the most influencing factor in Grenoble, whereas in Bodegraven,
the length of the possible gap is the key factor of acceptation. Using a Student’s t-test we concluded that not all variables are
significant for both data sets: the distance towards the end of the acceleration lane appears not to be significant in the Bodeg-
raven data set, while for the Grenoble data set the difference in speed between the putative leader and the putative follower
was not significant, which implies that the merging behaviour between the two sites indeed shows some differences, as sta-
ted before. The logistic regression analysis has a strong predictive power, being able to correctly predict the acceptance or
rejection of gaps in more than 98% of the cases.

Other topics for future research deal with an increase of the sample studied, both by looking at free flow conditions, and
by looking at data collected with an acceleration lane of different length. The type of vehicle, both of the merging vehicle and
of the putative leader and the putative follower was not analysed here, due to the lack of a sufficient dataset (in particular, in
Grenoble, none of the mergers is a heavy vehicle). This should also be investigated in future research.
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